List of Contributors xv
Acknowledgment xix
About the Editors xxi
1 Introduction1
Ignacio R. Matias and Ignacio Del Villar
References 14
2 Propagation of Light Through Optical Fibre17
Ignacio Del Villar
2.1 Geometric Optics 17
2.2 Wave Theory 22
2.2.1 Scalar Analysis 23
2.2.2 Vectorial Analysis 26
2.3 Fibre Losses and Dispersion 32
2.4 Propagation in Microstructured Optical Fibre 35
2.5 Propagation in Specialty Optical Fibres Focused on Sensing 37
2.6 Conclusion 45
References 46
3 Optical Fibre Sensor Set-Up Elements49
Minghong Yang and Dajuan Lyu
3.1 Introduction 49
3.2 Light Sources 50
3.2.1 Light-Emitting Diodes 52
3.2.1.1 Surface Light-Emitting Diode 52
3.2.1.2 Side Light-Emitting Diode 52
3.2.2 Laser Diode 53
3.2.2.1 Single-Mode Laser Diode Structure 54
3.2.2.2 Quantum Well Laser Diode 56
3.2.3 Superluminescent Diodes (SLD) 56
3.2.4 Amplified Spontaneous Emission Sources 59
3.2.5 Narrow Line Broadband Sweep Source 62
3.2.6 Broadband Sources 62
3.3 Optical Detectors 63
3.3.1 Basic Principles of Optical Detectors 64
3.3.1.1 PN Photodetector 64
3.3.1.2 PIN Photodetector 65
3.3.1.3 Avalanche Photodiode (APD) 66
3.3.2 Main Characteristics of Optical Detectors 66
3.3.2.1 Operating Wavelength Range and Cut-Off Wavelength 66
3.3.2.2 Quantum Efficiency and Responsiveness 67
3.3.2.3 Response Time 68
3.3.2.4 Materials and Structures of Semiconductor Photodiodes 69
3.3.3 Optical Spectrometers 70
3.4 Light Coupling Technology 71
3.4.1 Coupling of Fibre and Light Source 71
3.4.1.1 Coupling of Semiconductor Lasers and Optical Fibres 71
3.4.1.2 Coupling Loss of Semiconductor Light-Emitting Diodes and Optical Fibres 72
3.4.2 Multimode Fibre Coupled Through Lens 72
3.4.3 Direct Coupling of Fibre and Fibre 73
3.5 Fibre-Optic Device 74
3.5.1 Fibre Coupler 74
3.5.2 Optical Isolator 74
3.5.3 Optical Circulator 76
3.5.4 Fibre Attenuator 76
3.5.5 Fibre Polarizer 76
3.5.6 Optical Switch 77
3.6 Optical Modulation and Interrogation of Optical Fibre-Optic Sensors 77
3.6.1 Intensity-Modulated Optical Fibre Sensing Technology 78
3.6.1.1 Reflective Intensity Modulation Sensor 78
3.6.1.2 Transmissive Intensity Modulation Sensor 80
3.6.1.3 Light Mode (Microbend) Intensity Modulation Sensor 80
3.6.1.4 Refractive Index Intensity-Modulated Fibre-Optic Sensor 80
3.6.2 Wavelength Modulation Optical Fibre Sensing Technology 81
3.6.2.1 Direct Demodulation System 81
3.6.2.2 NarrowBand Laser Scanning System 82
3.6.2.3 Broadband Source Filter Scanning System 83
3.6.2.4 Linear Sideband Filtering Method 84
3.6.2.5 Interference Demodulation System 84
3.6.3 Phase Modulation Optical Fibre Sensing Technology 86
References 87
4 Basic Detection Techniques91
Daniele Tosi and Carlo Molardi
4.1 Introduction 91
4.2 Overview of Interrogation Methods 93
4.3 Intensity-Based Sensors 97
4.3.1 Macrobending 97
4.3.2 In-Line Fibre Coupling 99
4.3.3 Bifurcated Fibre Bundle 100
4.3.4 Smartphone Sensors 100
4.4 Polarization-Based Sensors 102
4.4.1 Pressure and Force Detection 102
4.4.2 Lossy Mode Resonance for Refractive Index Sensing 104
4.5 Fibre-Optic Interferometers 105
4.5.1 FabryPérot Interferometer (FPI)-Based Fibre Sensors 106
4.5.1.1 Extrinsic FPI for Pressure Sensing 107
4.5.1.2 In-Line FPI for Temperature Sensing 108
4.5.2 MachZehnder Interferometer (MZI)-Based Fibre Sensors 109
4.5.3 Single-Multi-Single Mode (SMS) Interferometer-Based Fibre Sensors 109
4.6 Grating-Based Sensors 111
4.6.1 Fibre Bragg Grating (FBG) 111
4.6.2 FBG Arrays 113
4.6.3 Tilted and Chirped FBG 115
4.6.4 Long-Period Grating (LPG) 117
4.6.5 FBG Fabrication 118
4.7 Conclusions 121
References 121
5 Structural Health Monitoring Using Distributed Fibre-Optic Sensors125
Alayn Loayssa
5.1 Introduction 125
5.2 Fundamentals of Distributed Fibre-Optic Sensors 126
5.2.1 Raman DTS 128
5.2.2 Brillouin DTSS 129
5.3 DFOS in Civil and Geotechnical Engineering 130
5.3.1 Bridges 133
5.3.2 Tunnels 134
5.3.3 Geotechnical Structures 137
5.4 DFOS in Hydraulic Structures 141
5.5 DFOS in the Electric Grid 143
5.6 Conclusions 145
References 146
6 Distributed Sensors in the Oil and Gas Industry151
Arthur H. Hartog
6.1 The Late Life Cycle of a Hydrocarbon Molecule 153
6.1.1 Upstream 154
6.1.1.1 Exploration 154
6.1.1.2 Well Construction 155
6.1.1.3 Formation and Reservoir Evaluation 157
6.1.1.4 Production 158
6.1.1.5 Production of Methane Hydrates 159
6.1.1.6 Well Abandonment 160
6.1.2 Midstream: Transportation 160
6.1.3 Downstream: Refinery and Distribution 161
6.2 Challenges in the Application of Optical Fibres to the Hydrocarbon 161
6.2.1 Conditions 161
6.2.2 Conveyance Methods 162
6.2.2.1 Temporary Installations (Intervention Services) 163
6.2.2.2 Permanent Fibre Installations 163
6.2.3 Fibre Reliability 165
6.2.4 Fibre Types 166
6.3 Applications and Take-Up 168
6.3.1 Steam-Assisted Recovery; SAGD 168
6.3.2 Flow Allocation: Conventional Wells 171
6.3.3 Injector Monitoring 174
6.3.4 Thermal Tracer Techniques 175
6.3.5 Water Flow Between Wells 176
6.3.6 Gas-Lift Valves 176
6.3.7 Vertical Seismic Profiling (VSP) 177
6.3.8 Hydraulic Fracturing Monitoring (HFM) 184
6.3.9 Sand Production 185
6.4 Summary 186
References 186
7 Biomechanical Sensors193
Cicero Martelli, Jean Carlos Cardozo da Silva, Alessandra Kalinowski, José Rodolfo Galvão, and Talita Paes
7.1 Optical Fibre Sensors in Biomechanics: Introduction and Review 193
7.2 Optical Fibre Sensors: From Experimental Phantoms toIn VivoApplications 198
7.2.1 Experimental Phantoms and Models 198
7.2.1.1 Joints 199
7.2.1.2 Bones and Muscles 199
7.2.1.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) 200
7.2.1.4 Prosthesis and Extracorporeal Devices 200
7.2.1.5 Sole and Insoles 201
7.2.1.6 Smart Fabrics 201
7.2.1.7 Blood Vessels 202
7.2.1.8 Respiratory Monitoring 203
7.2.2In Vitro203
7.2.3Ex Vivo204
7.2.3.1 Joints 204
7.2.3.2 Bones and Muscles 205
7.2.3.3 Teeth, Lower Jaw (Mandible), and Upper Jaw (Maxilla) 205
7.2.3.4 Blood Vessels 205
7.2.3.5 Mechanical Properties of Tissues 207
7.2.4In Vivo207
7.2.4.1 Joints 207
7.2.4.2 Bones and Muscles 207
7.2.4.3 Teeth, Lower Jaw (Mandible) and Upper Jaw (Maxilla) 208
7.2.4.4 Blood Vessels 208
7.2.4.5 Respiratory Monitoring 208
7.2.5In Situ208
7.2.5.1 Joints 209
7.2.5.2 Bones and Muscles 209
7.2.5.3 Prostheses and Extracorporeal Devices 210
7.2.5.4 Soles and Insoles 210
7.2.5.5 Cardiac Monitoring 211
7.2.5.6 Respiratory Monitoring 211
7.3 FBG Sensors Integrated into Mechanical Systems 213
7.3.1 FBG Sensors Glued with Polymer 214
7.3.2 Polymer-Integrated FBG Sensor 215
7.3.3 Smart Fibre Reinforced Polymer (SFRP) 218
7.4 Future Perspective 222
Acknowledgment 223
References 224
8 Optical Fibre Chemical Sensors239
T. Hien Nguyen and Tong Sun
8.1 Introduction 239
8.2 Principles and Mechanisms of Fibre-Optic-Based Chemical Sensing 240
8.2.1 Principle of Chemical Sensor Response 240
8.2.2 Absorption-Based Sensors 242
8.2.3 Luminescence-Based Sensors 243
8.2.4 Surface Plasmon Resonance (SPR)-Based Sensors 245
8.3 Sensor Design and Applications 247
8.3.1 Optical Fibre pH Sensors 247
8.3.1.1 Principle of Fluorescence-Based pH Measurements 248
8.3.1.2 pH Sensor Design 249
8.3.1.3 Set-Up of a pH Sensor System 253
8.3.1.4 Evaluation of the pH Sensor Systems 254
8.3.1.5 Comments 260
8.3.2 Optical Fibre Mercury Sensor 261
8.3.2.1 Sensor Design and Mechanism 262
8.3.2.2 Evaluation of the Mercury Sensor System 265
8.3.2.3 Comments 271
8.3.3 Optical Fibre Cocaine Sensor 271
8.3.3.1 Sensing Methodology 272
8.3.3.2 Design and Fabrication of a Cocaine Sensor System 273
8.3.3.3 Evaluation of the Cocaine Sensor System 275
8.3.3.4 Comments 280
8.4 Conclusions and Future Outlook 281
Acknowledgements 282
References 282
9 Application of Nanotechnology to Optical Fibre Sensors: Recent Advancements and New Trends289
Armando Ricciardi, Marco Consales, Marco Pisco, and Andrea Cusano
9.1 Introduction 289
9.2 A View Back 292
9.3 Nanofabrication Techniques on the Fibre Tip for Biochemical Applications 293
9.3.1 Direct Approaches 294
9.3.2 Indirect Approaches 301
9.3.3 Self-Assembly 305
9.3.4 Smart Materials Integration 307
9.4 Nanofabrication Techniques on the Fibre Tip for Optomechanical Applications 309
9.5 Conclusions 317
References 320
10 From Refractometry to Biosensing with Optical Fibres331
Francesco Chiavaioli, Ambra Giannetti, and Francesco Baldini
10.1 Basic Sensing Concepts and Parameters for OFSs 332
10.1.1 Parameters of General Interest 335
10.1.1.1 Uncertainty 335
10.1.1.2 Accuracy and Precision 335
10.1.1.3 Sensor Drift and Fluctuations 336
10.1.1.4 Repeatability 336
10.1.1.5 Reproducibility 336
10.1.1.6 Response Time 336
10.1.2 Parameters Related to Volume RI Sensing 337
10.1.2.1 Refractive Index Sensitivity 337
10.1.2.2 Resolution 338
10.1.2.3 Figure of Merit (FOM) 339
10.1.3 Parameters Related to Surface RI Sensing 339
10.1.3.1 Sensorgram and Calibration Curve 340
10.1.3.2 Limit of Detection (LOD) and Limit of Quantification (LOQ) 341
10.1.3.3 Specificity (or Selectivity) 345
10.1.3.4 Regeneration (or Reusability) 345
10.2 Optical Fibre Refractometers 347
10.2.1 Optical Interferometers 348
10.2.2 Grating-Based Structures 348
10.2.3 Other Resonance-Based Structures 350
10.3 Optical Fibre Biosensors 352
10.3.1 Immuno-Based Biosensors 353
10.3.2 Oligonucleotide-Based Biosensors 354
10.3.3 Whole Cell/Microorganism-Based Biosensors 357
10.4 Fibre Optics Towards Advanced Diagnostics and Future Perspectives 360
References 361
11 Humidity, Gas, and Volatile Organic Compound Sensors367
Diego Lopez-Torres and César Elosua
11.1 Introduction 367
11.2 Optical Fibre Sensor Specific Features for Gas and VOC Detection 368
11.3 Sensing Materials 370
11.3.1 Organic Chemical Dyes 370
11.3.2 MetalOrganic Framework (MOF) Materials 372
11.3.3 Metallic Oxides 374
11.3.4 Graphene 378
11.4 Detection of Single Gases 379
11.5 Relative Humidity Measurement 383
11.6 Devices for VOC Sensing and Identification 384
11.7 Artificial Systems for Complex Mixtures of VOCs: Optoelectronic Noses 387
11.8 Conclusions 391
References 392
12 Interaction of Light with Matter in Optical Fibre Sensors: A Biomedical Engineering Perspective399
Sillas Hadjiloucas
12.1 Introduction 399
12.2 Energy Content in Light and Its Effect in Chemical Processes 399
12.3 Relevance of Wiens Law to Physicochemical Processes 402
12.4 Absorption of Light Molecules 403
12.5 The Role of Electron Spin and State Multiplicity in Spectroscopy 404
12.6 Molecular Orbitals, Bond Conjugation, and Photoisomerization 406
12.7 De-excitation Processes Through Competing Pathways: Their Effect on Lifetimes and Quantum Yield 407
12.8 Energy Level Diagrams and Vibrational Sublevels 412
12.9 Distinction Between Absorption and Action Spectra 413
12.10 Light Scattering Processes 414
12.10.1 Elastic Scattering 414
12.10.2 Inelastic Scattering 416
12.11 Induction of Non-linear Optical Processes 418
12.12 Concentrating Fields to Maximize Energy Exchange in the Measurement Process Using Slow Light 419
12.12.1 Slow Light Using Atomic Resonances and Electromagnetically Induced Transparency 419
12.12.2 Slow Light Using Photonic Resonances 424
12.13 Field Enhancement and Improved Sensitivity Through Whispering Gallery Mode Structures 427
12.14 Emergent Technological Trends Facilitating Multi-parametric Interactions of Light with Matter 429
12.14.1 Integration of Optical Fibres with Microfluidic Devices and MEMS 429
12.14.2 PumpProbe Spectroscopy 430
12.15 Prospects of Molecular Control Using Femtosecond Fibre Lasers 430
12.15.1 Femtosecond Pulse Shaping 430
12.15.2 New Opportunities for Coherent Control of Molecular Processes 432
12.15.3 Developments in Evolutionary Algorithms for Molecular Control 434
References 436
13 Detection in Harsh Environments441
Kamil Kosiel and Mateusz mietana
13.1 Introduction 441
13.2 Optical Fibre Sensors for Harsh Environments 442
13.3 Need for Harsh Environment Sensing Based on Optical Fibres 443
13.4 General Requirements for Harsh Environment OFSs 449
13.5 Silica Glass Optical Fibres for Harsh Environment Sensing 451
13.6 Polymer Optical Fibres for Harsh Environment Sensing 461
13.7 Chalcogenide Glass and Polycrystalline Silver Halide Optical Fibres for Harsh Environment Sensing 464
13.8 Monocrystalline Sapphire Optical Fibres for Harsh Environment Sensing 467
13.9 Future Trends in Optical Fibre Sensing 469
References 470
14 Fibre-Optic Sensing: Past Reflections and Future Prospects477
Brian Culshaw and Marco N. Petrovich
14.1 Introductory Comments 477
14.2 Reflections on Achievements to Date 478
14.3 Photonics: How is It Changing? 484
14.4 Some Future Speculation 486
14.4.1 Photonic Integrated and Plasmonic Circuits 487
14.4.2 Metamaterials in Sensing 490
14.4.3 More Variations on the Nano Story 492
14.4.4 Improving the Signal-to-Noise Ratio 493
14.4.5 Quantum Sensing, Entanglement, and the Like 494
14.4.6 The Many Prospects in Fibre Design and Fabrication 495
14.4.7 Technologies Other than Photonics 500
14.4.8 Societal Aspirations in Sensor Technology 501
14.4.9 The Future and a Quick Look at the Sensing Alternatives 501
14.4.10 So What Has Fibre Sensing Achieved to Date 503
14.5 Concluding Observations 504
References 504
Index 511