banner-tegeler-buecherstube-hdneu.jpg

banner-buchhandlung-menger-hdneu.jpg

banner-buchhandlung-haberland-hdneu.jpg

banner-buchhandlung-anagramm-hd_1.jpg

0

Learning Motor Skills

From Algorithms to Robot Experiments, Springer Tracts in Advanced Robotics 97

Erschienen am 09.12.2013, 1. Auflage 2014
106,99 €
(inkl. MwSt.)

Vorbestellung vorauss. lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783319031934
Sprache: Englisch
Umfang: xvi, 191 S., 2 s/w Illustr., 54 farbige Illustr.,
Einband: gebundenes Buch

Beschreibung

This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor.skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author's doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.

Autorenportrait

InhaltsangabeReinforcement Learning in Robotics: A Survey.- Movement Templates for Learning of Hitting and Batting.- Policy Search for Motor Primitives in Robotics.- Reinforcement Learning to Adjust Parameterized Motor Primitives to New Situations.- Learning Prioritized Control of Motor Primitives.