Beschreibung
Inhaltsangabe1 Explosive-Driven Power Sources.- 1.1 Introduction.- 1.2 Overview of Explosive-Driven Power Sources.- 1.3 Magnetocumulative Generator History.- 1.4 Electromagnetic Theory.- 1.4.1 Field Theory: Maxwell's Equations.- 1.4.2 Circuit Equations: Kirchhoff's Equations.- 1.5 Electromagnetic Phenomena.- 1.5.1 Magnetic Pressure and Diffusion.- 1.5.2 Magnetic Force.- 1.5.3 Magnetic Pressure.- 1.5.4 Electric Fields.- 1.6 Shock and Detonation Waves.- 1.7 Explosives and Explosive Components.- 1.7.1 Categories of Explosives.- 1.7.2 Explosive Components.- 1.8 Introduction to MCGs.- 1.8.1 Circuit Equations.- 1.8.2 Field Equations.- 1.8.3 Magnetocumulative Generator Performance.- References.- 2 Magnetocumulative Generator Physics and Design.- 2.1 Conditions That Affect Magnetic Field Compression.- 2.1.1 Field Diffusion.- 2.1.2 Liner Compressibility.- 2.1.3 Conductivity Change.- 2.1.4 Surface Instability.- 2.2 Theory of Magnetocumulative Current Generators.- 2.3 Current Generator Design Issues.- 2.3.1 Eliminating Electric Breakdown.- 2.3.2 Increasing the Energy Amplification Factor.- 2.3.3 Delivering the Maximum Possible Energy to the Load.- 2.3.4 Attaining the Maximum Possible Gain.- 2.3.5 Unconstrained Energy Amplification.- References.- 3 Magnetocumulative Generators.- 3.1 Introduction.- 3.2 Classifications of MCGs.- 3.3 Coaxial MCGs.- 3.4 Spiral (Helical) MCGs.- 3.5 Plate MCGs.- 3.6 Loop MCGs.- 3.7 Disk MCGs.- 3.8 Semiconductor MCGs.- 3.8.1 Theory of Operation.- 3.8.2 SWMCG Working Substances.- 3.8.3 SWMCG Designs.- 3.9 Cascaded MCGs.- 3.10 Short-Pulse MCGs.- References.- 4 Pulse-Forming Networks.- 4.1 High-Speed Opening Switches.- 4.1.1 Explosive Opening Switches.- 4.1.2 Electroexplosive Switches.- 4.1.3 Explosive Plasma Switches.- 4.2 Pulsed Transformers.- 4.3 Spark Gap Switches.- 4.4 Pulse-Forming Lines.- 4.5 High-Voltage MCG Systems.- 4.5.1 Magnetic Flux Trapping.- 4.5.2 Flux Trapping and No Transformer.- 4.5.3 Flux Trapping and Transformers.- References.- 5 Electrical Loads.- 5.1 Direct Connection to a Load.- 5.1.1 Case 1: Rc = 0, L(t) = L0exp(-?t).- 5.1.2 Case 2: Rc = 0, L = L0(1 - ?t).- 5.1.3 Case 3: Rc ? 0, L= L0(l - ?t).- 5.1.4 Case 4: CL =0.- 5.1.5 Case 5: CL = 0, RC =0.- 5.2 Connection Through Pulsed Transformers.- 5.2.1 Case 1: Complex Loads.- 5.2.2 Case 2: Resistive and Inductive Loads.- 5.2.3 Case 3: R1 = 0 and I20 =0.- 5.2.4 Case 4: Low-Resistance Loads.- 5.2.5 Case 5: R1 = 0, R2 = 0, and CL =0.- 5.2.6 Case 6: Active Load, When R1 =0.- 5.2.7 Case 7: Pulse-Shaping Transformers.- 5.3 Connecting Through an Electroexplosive Switch.- 5.3.1 Complex Load.- 5.3.2 Active Load.- 5.3.3 Effects of Switch Inductance on Energy Coupling Coefficient for an Inductive Load.- 5.4 Pulsed Transformer and Electroexplosive Switch.- 5.4.1 Complex Load.- 5.4.2 Active Load.- References.- 6 Design, Construction, and Testing.- 6.1 A Brief Description of FLEXY I.- 6.2 Computer Models.- 6.2.1 Simple Zero-Order Model for a Helical MCG.- 6.2.2 Simple 2D Model for a Helical MCG.- 6.2.3 Comparison to Other Codes.- 6.3 Helical Generator Design.- 6.3.1 Basic Input Data.- 6.3.2 Helical Coil Design Rules.- 6.4 Construction of the FLEXY I.- 6.5 Testing the FLEXY I.- 6.6 Comparison of Theoretical and Experimental Results.- 6.7 Summary.- References.- 7 Experimental Methods and Techniques.- 7.1 Experimental Methods.- 7.1.1 Electromagnetic Techniques.- 7.1.2 Detonic Techniques.- 7.2 Explosive Pulsed Power Laboratory.- 7.3 Testing Fast Switches and Conditioning Circuits.- 7.3.1 Exploding Foil Empirical Model.- 7.3.2 Magnetic Flux Compressor/Opening Switch Experiments.- 7.3.3 Opening and Closing Exploding Foil Switches.- 7.3.4 Faster Switching Techniques.- 7.3.5 Optimizing Exploding Foils.- 7.4 Magnetic Coupling between MCGs.- 7.4.1 The FLUXAR System.- 7.4.2 FLUXAR Working Equations.- 7.4.3 FLUXAR Techniques and Performance.- 7.4.4 A Case Study.- 7.5 Limitations of Helical MCGs.- 7.6 Summary.- References.- 8 Applications: Lasers and Microwaves.- 8.1 Lasers.- 8.1.1 Neody